Amiloride-sensitive signals and NaCl preference and appetite: a lick-rate analysis.

نویسندگان

  • M D Brot
  • C H Watson
  • I L Bernstein
چکیده

Rats prefer hypotonic and isotonic NaCl solutions to water in long-access drinking paradigms. To focus on the role of taste signals in NaCl preference, licking patterns of rats with 30-s exposure to NaCl solutions (0-0.5 M) were examined when they were either water deprived, sodium depleted, or not deprived (NaCl mixed in dilute sucrose). In all three conditions, rats displayed a preference for NaCl. The addition of 100 microM amiloride, a sodium channel blocker, to NaCl did not change rats' licking when they were sodium replete but dramatically reduced licking when they were deplete. Transection of the chorda tympani (CT) nerve, an afferent pathway for amiloride-sensitive Na(+) signals, had no effect on NaCl preference in nondeprived rats and only a modest effect on those that were Na(+) deplete. Amiloride was found to exert significant suppression of NaCl intake in Na(+)-depleted rats with transection of the CT, supporting the existence of other afferent pathways for transmission of amiloride-sensitive Na(+) signalling. Together, these studies argue for the involvement of different neural signalling mechanisms in NaCl preference in the presence and absence of explicit Na(+) need.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amiloride-sensitive sodium signals and salt appetite: multiple gustatory pathways.

In the rat, the ionic specificity of Na+ appetite is thought to rely on amiloride-sensitive Na+ signals conveyed by the chorda tympani (CT) nerve. We evaluated whether robust Na+ appetite relies exclusively on CT-mediated amiloride-sensitive Na+ signals. Amiloride dramatically reduced sham drinking of NaCl (41.9 ± 9.0 vs. 6.9 ± 3.7 ml, 0.1 M NaCl without vs. with 100 μM amiloride), which result...

متن کامل

Taste discrimination between NaCl and KCl is disrupted by amiloride in inbred mice with amiloride-insensitive chorda tympani nerves.

The amiloride-sensitive salt transduction pathway is thought to be critical for the discrimination between sodium and nonsodium salts in rodents. In rats, lingual application of amiloride appears to render NaCl qualitatively indistinguishable from KCl. In this study, we tested four strains of mice for salt discriminability. In one strain (C57BL/6J), chorda tympani nerve (CT) responses to NaCl a...

متن کامل

Amiloride does not alter NaCl avoidance in Fischer-344 rats.

Fischer-344 (F-344) rats differ from other common rat strains in that they fail to show any preference for NaCl at any concentration in two-bottle preference tests. Because 100 microM amiloride partially blocks the NaCl-evoked chorda tympani (CT) response in electrophysiological studies, we tested NaCl preference (0.068-0.273 M) in F-344 rats with and without 100 microM amiloride solution as th...

متن کامل

Salty taste deficits in CALHM1 knockout mice.

Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related ...

متن کامل

Amiloride inhibits taste nerve responses to NaCl and KCl in Sprague-Dawley and Fischer 344 rats.

In a two-bottle test, Sprague-Dawley rats preferentially consume a greater amount of hypotonic and isotonic NaCl solutions relative to water, whereas inbred Fischer 344 (F344) rats fail to prefer NaCl solutions at any concentration relative to water. To determine whether taste contributes to this strain difference, we measured the integrated neural responses of the chorda tympani nerve to a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2000